
NDIS and TDI Hooking,
Part II

By: andreas

This is the second and last article on how to hook into the NDIS

and TDI

layer. The approach we will use will be slightly different from the

NDIS

case. However, a neat side effect is that this method can be used

to hook

into any device chain, for example the keyboard to sniff key

strokes. It all boils down to getting a pointer to the device object

and replace all major functions with our own dispatch function.

To be able to fully control the TDI layer, we need access to the IRP both

before and after the original driver has processed it. If we have that, we

can choose what the original driver should process and we can also alter

results before they are returned to user-space. The "before filtering" can

be accomplished in our own, new dispatch function and the "after filtering" can be accomplished in a

completion routine.

First, to be able to overwrite and insert our own dispatch function, we need a pointer to the driver object we

are going to hook into. An easy way to get this pointer is to call ObReferenceObjectByName with the

appropriate driver name. Then we only have to save all old function pointers and overwrite the existing

ones with our own. The code to do this would look something like the following:

DRIVER_OBJECT RealTDIDriverObject;

NTSTATUS HookTDI(void)

{

 NTSTATUS Status;

 UNICODE_STRING usDriverName;

 PDRIVER_OBJECT DriverObjectToHookPtr;

 UINT i;

 RtlInitUnicodeString(&usDriverName,L"\\Driver\\Tcpip");

 Status =

ObReferenceObjectByName(&usDriverName,OBJ_CASE_INSENSITIVE,NULL,0,IoDr

iverObjectType,KernelMode,NULL,&DriverObjectToHookPtr);

 if(Status != STATUS_SUCCESS) return Status;

 for(i = 0;i < IRP_MJ_MAXIMUM_FUNCTION;i++) {

 RealTDIDriverObject.MajorFunction[i] =

DriverObjectToHookPtr->MajorFunction[i];

 DriverObjectToHookPtr->MajorFunction[i] = TDIDeviceDispatch;

 }

 return STATUS_SUCCESS;

}

RealTDIDriverObject is a DRIVER_OBJECT where we save the original

information to both be able to call the old functions and also be able to

unhook once we are done. The orignal driver gets all its major functions

overwritten with a pointer to our own dispatch function, TDIDeviceDispatch.

We now have control over the IRPs before TDI can process them. But, we still have to make sure we can

also control them once TDI is done with it but before it is returned to the IO handler and user-space. We

will solve this in our dispatch function with the help of a completion routine. It is not as straight forward as it

sounds, since we might be hooking the last entity in the chain, we can't just insert a completion routine with

IoSetCompletionRoutine (see the DDK docs), since it in that case never will be called. Completion routines

are set in the next IRP stack location, not the current. If we are the last entity, there will be no next stack

location in the IRP. Searching through the header files reveal IoSetCompletionRoutine as a macro which

only gets the next IRP stack location and sets the CompletionRoutine pointer together with the Control

element. Following the same principcal, we can set our own completion routine to regain control over the

IRP with the following dispach function:

NTSTATUS TDIDeviceDispatch(IN PDEVICE_OBJECT DeviceObject,IN PIRP Irp)

{

 NTSTATUS Status;

 PIO_STACK_LOCATION StackLocationPtr;

 if(Irp == NULL) return STATUS_SUCCESS;

 StackLocationPtr = IoGetCurrentIrpStackLocation(Irp);

 if(StackLocationPtr->CompletionRoutine != NULL) StackLocationPtr-

>Context =

StackLocationPtr->CompletionRoutine;

 else StackLocationPtr->Context = NULL;

 StackLocationPtr->CompletionRoutine =

(PIO_COMPLETION_ROUTINE)TDICompletionRoutine;

 StackLocationPtr->Control = SL_INVOKE_ON_SUCCESS |

SL_INVOKE_ON_ERROR |

SL_INVOKE_ON_CANCEL;

 Status =

RealTDIDriverObject.MajorFunction[StackLocationPtr-

>MajorFunction](DeviceObject,Irp);

 return Status;

}

What we actually do is faking a scenario where the layer above set the

completion routine for us. We also save a potentially already existing

completion routine in the Context element of the IRP. Control is set to

invoke the completion routine in all cases. There are 2 potential issues

with this code. First, we overwrite whatever is in the Context element.

Second, we never save the Control element, so we don't know when to invoke

an already existing completion routine. So far, I have not seen any

side-effects from doing this.

The completion routine would look something like:

NTSTATUS TDICompletionRoutine(PDEVICE_OBJECT DeviceObject,PIRP

Irp,PVOID

Context)

{

 COMPLETIONROUTINE RealCompletionRoutine =

(COMPLETIONROUTINE)Context;

 if(Context != NULL) return

RealCompletionRoutine(DeviceObject,Irp,NULL);

 else return STATUS_SUCCESS;

}

It invokes a potential completion routine as soon as it is done and returns the status from it. Finally,

unhooking the driver is just a question of restoring the pointers we overwrote in the hooking function:

NTSTATUS ReleaseTDIDevices(void)

{

 NTSTATUS Status;

 UNICODE_STRING usDriverName;

 PDRIVER_OBJECT DriverObjectToHookPtr;

 UINT i;

 RtlInitUnicodeString(&usDriverName,L"\\Driver\\Tcpip");

 Status =

ObReferenceObjectByName(&usDriverName,OBJ_CASE_INSENSITIVE,NULL,0,IoDr

iverObjectType,KernelMode,NULL,&DriverObjectToHookPtr);

 if(Status != STATUS_SUCCESS) return Status;

 for(i = 0;i < IRP_MJ_MAXIMUM_FUNCTION;i++)

 DriverObjectToHookPtr->MajorFunction[i] =

RealTDIDriverObject.MajorFunction[i];

 return STATUS_SUCCESS;

}

There is another way to accomplish the same result which utilizes a more

offically supported mode of operation. It is based upon attaching to the

device chain with GetDeviceObject and AttachToDevice, which will allow us to process all IRPs before the

real device. Once in the dispatch function we contruct a new IRP and add a completion routine to regain

control of the IRP before it is returned to the IO system and user-space.

One last important thing to mention; This code is quite untested. It seems

to work as intended but it has never been used in any major applications, so use it on your own risk. With

that said, hope you have enjoyed this little article series.

