
Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Reverse Engineering with
Ida Pro
Chris Eagle

cseagle@redshift.com
Blackhat Training

Federal 2006

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Administrivia

• Welcome!
• Please turn in your "A" ticket in

exchange for a CD and printed notes
– WARNING – the CD contains code that

will trigger your AV software

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Administrivia

• Class only wireless (i.e. no internet)
– Ssid: ctf
– Wep key:

0xAAAAAAAAAAAAAAAAAAAAAAAAAA
• i.e. hex key consisting of 26 A's

• Class ftp server
– 172.16.5.11

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Administrivia

• cygwin users
– Make sure you have gcc/g++ AND make

installed before tomorrow

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Background

• Personal experience
– 20+ years assembly/C/C++/…
– 8 years teaching graduate level CS

• Programming languages
• Forensics
• Computer network attack/defense

• Interests
– Obfuscated code analysis

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Class Background
• Profession

– Industry?
• Hardware
• Software

– Government?
– Academic?

• Experience
– IDA?
– x86? Other ASM?
– Windows? Linux?

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Expectations/Goals

• Discover how a program works
– Build compatible software

• Locate hidden functionality
– Backdoors etc.

• Search for vulnerabilities in closed
source software

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Introduction

• Reverse engineering with Ida
– Created by Ilfak Guilfanov
– Premier disassembly tool available today

• Interactive
• Many platforms supported
• Highly extensible

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Basic Disassembly Theory

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Disassembly

• Need the proper tools
• Tools must understand executable file

format
– Unless you are dying to parse the file

yourself in a hex editor
• Parse machine language op codes back

to their assembly language equivalents
– Must know when to stop, data vs. code

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Disassemblers vs. Debuggers

• Debuggers by nature are designed to
run code
– All can disassemble if asked to

• Single functions
• From IP forward

– Most don't do batch disassembly
• Disassemblers aren't interested in

running code

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Disassemblers

• Two main types
– Linear sweep
– Recursive descent

• Output is generally a disassembly listing
– Can yield extremely large text files
– Difficult to navigate/change

• Disassembly fails to reveal obfuscated
code

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Disassembly Tools
• Linux

– objdump
• Provides a lot of info, see man page for

switches
– objdump –d /bin/cat

– gdb
• Can generate disassembly listings but they are

cumbersome

• Windows
– Interactive Disassembler Pro (IdaPro)

• Understands most executable file formats

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Binary File Formats

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Common Formats

• Executable and Linkable (ELF) Format
– Found on Linux/Unix
– Described in file docs/ELF_Format.pdf on

the CD
• Portable Executable (PE) Format

– Windows
– Several files in the docs directory on the

CD

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Common Elements

• Each format specifies header fields that
describe
– Characteristics of the executable
– Point to various portions of the executable
– Import and export fields
– Debugging information
– Others

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Essential Information

• Virtual address info
– Where to load
– Program entry point

• Relocation information
– How to modify the memory image if it can't

be loaded at its preferred location
• Program section descriptions

– Where and how large various sections are

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Program Sections

• Many different types
– Code sections contain the executable

portions of the program
• Often named ".text"

– Data sections contain various types of
statically allocated data

• Read only data - .rodata
• Read/write initialized data - .data
• Read/write un-initialized data - .bss

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Program Sections (cont)

– Import sections
• Procedure linkage table - .plt
• Global offset table - .got
• Import table - .idata

– Other sections
• Some sections are required only by the linker

and are not used at run time

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Pro

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDA Pro

• Interactive Disassembler Professional
– http://www.datarescue.com/idabase

• Recursive descent disassembler
• Premier disassembly tool for reverse

engineers
– Handles many families of assembly language

• Interactive manipulation of disassembly listing
• Scripting and plugins
• Runs on Windows and Linux

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDA Pro Operation

• Load the binary of interest
• IDA builds a database to characterize each

byte of the binary
– All manipulations of the disassembly involve

database interactions
• Performs detailed analysis of code

– Recognizes function boundaries and library calls
– Recognizes data types for known library calls

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Pro Features

• Graph based display of program flow
• Flowchart display of function flow
• Displays data and code cross references

– List of all locations that refer to a particular piece
of data

– List of all locations that call a particular function
• Automatic recognition of string constants

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Pro Features

• Hex display option
• Separate strings window
• Separate list of all symbols in the program
• Very nice stack frame displays
• Allows you to assign your own names to code

locations/functions
• Allows you to assign your own names to

function locals and parameters

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Basics

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Assembly Notes

• We will use "intel" syntax throughout
– MOV <dest>, <src>

• This is what IDA produces
• objdump –d –M intel <file>
• gdb – set disassembly-flavor intel

– As opposed to "AT&T" syntax
• MOV <src>, <dest>
• Default for objdump, gdb

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Stack Terminology/Display

• For this class
• A is "above" B on stack

to the right
– Though it lies at a lower

memory address

…

C
B
A

…

Stack bottom == higher memory
addresses

Lower memory
addresses

esp == top of stack

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Using Ida Pro

• Open Ida
• Choose "New" to start a new project or

"Previous" to resume previous work
• If "New" selected, navigate to the file you

wish to disassemble and open it
• Ida should recognize the file format and start

to analyze your file
– Displays as much info as possible taking symbol

tables and debugging info into account

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Basic Ida Walkthrough

• Open the file
– demos/ asm_code_samples_bor.exe

• Observe file type identification
• Ida analyzes file and opens various analysis

windows
• The source code for this file can be found in

– demos/asm_code_samples.c
– Open it for comparison with the binary

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Open File Dialog

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Caution

• IDA began life as a DOS application
– Virtually every action has a hot key

sequence
• Consequently, virtually every key makes

something happen
• THERE IS NO UNDO IN IDA PRO

• Almost all IDA actions are also available
via menu items or toolbar buttons

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Navigation

• Double click on a reference to a name and
IDA jumps to the named location
– Names can be

• Function names
• Local jump targets within a function
• Global variable names

• IDA maintains a web-browser-like history list
– The ESC key acts like a back button
– There are also forward and backward arrows to

move back and forth as well

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDA View Window
• This is the main working window

– Disassembly view
• Disassembly initially positioned at entry

point or main
– Entry point for programs is generally not

main but a location named start or _start
• Start does program setup before calling main

– If main is present, Ida will position cursor
there

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Names Window

• Lists all known named locations in program
– Based on imports, exports, and some analysis
– F is a function
– L is a library function
– C is code/instruction
– A is a string
– D is defined data
– I is an imported function

• Dynamically linked

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Strings Window

• Strings window
– Complete listing of embedded strings

within program
– Configurable

• Right click in Strings window and choose setup
• Can change minimum length or style of string

to search for
– Ida rescans for strings if you change settings

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Interaction

• One of the greatest strengths of Ida is the
ability to interact with a disassembly
– Rather than a static disassembly file generated by

a tool such as objdump
• Among other things you can do

– Renaming
– Reformatting code-data-code
– Adding comments
– Many others

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Renaming in Ida

• Having source code is cheating
– But useful today so we can see original

names used by the programmer
• Compilation is a lossy operation

– In a binary we are lucky to get functions
names

• Not always the case
– Never get local variable names

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Names

• Just about anything in Ida can have a
name
– Any address or stack variable

• Ida will assign names based on
– Symbol table in binary
– Default generated name
– User assigned

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Default Names

• sub_xxxx
– function starting at address xxxx

• loc_xxxx
– Code at location xxxx that is referenced

from elsewhere, generally a branch target
• byte_xxxx, word_xxxx, dword_xxxx

– Byte, word or dword data at location xxxx

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Changing/Adding Names

• The name of anything can be set or
changed

• Edit/Rename, hotkey is ‘n’
• Place the cursor on the item that you

wish to rename and press ‘n’
• Opens dialog to rename variable or

address

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• In the Ida View window, click on sub_401150
at this line:
.text:004013FA call sub_401150
– Press ‘n’ to open a rename window
– This particular window applies to renaming

addresses
• Enter the new name ‘simple_if’
• Changing a globally scoped name adds it to

the Names window

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Before Renaming

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

After Renaming

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Readability

• Note the improved readability of the
code

• The previous name sub_401150 is an
example of an Ida default name
– Not at all descriptive

• When you rename an item, Ida makes
the change in all locations that refer to
that item

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Navigation

• Double click on ‘simple_if’ to jump to the
simple_if function
– Easy navigation reduces the need for

search
– ESC will take you back

• Careful with ESC, in every window other than
the View window, ESC closes the window

• Recover windows via the View/Open Subviews
menu

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Renaming Variables

• From the source code we can see that
simple_if has two arguments, a and b as well
as a local variable result
– Highlight and press n to rename them

• Ida shows two arguments arg_0 and arg_4,
but no local variables
– Ida default names

• arg_x an argument x bytes below saved eip
• var_x a local variable x bytes above saved registers

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Renaming a Stack Variable

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

After Renaming

Note use of a
and b here

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Display Elements

virtual
addresses

branch
indication

cross
references

stack
variables

section
name

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Features of Compiled Code

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Assembly Constructs

• It is useful to understand what compiled
code looks like

• Makes it easier to understand what the
source code probably looked like

• Remember, there are always many
ways to translate a given sequence of
source code into equivalent assembly

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Parameter Passing

• Dictated by calling conventions utilized
by each function

• Tells you how parameters will be
accessed by each function

• Tells you how parameters will be
passed to each function

• Tells you whether caller or callee will
clean up the stack afterwards

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Calling Conventions (i)
• Vary by compiler

– Visual C++
• cdecl

– Push parameters right to left
– Caller cleans up stack

• stdcall
– Push parameters right to left
– Called function cleans up stack
– Windows API functions use this calling convention

• fastcall
– First two parameters (on the left) go in ECX and EDX
– Remaining parameters are pushed right to left

• thiscall
– For C++ non-static member functions, this is placed in

ECX

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Calling Conventions (ii)

• gcc
– Supports cdecl and stdcall
– cdecl is the default

• g++
– Pushes "this" as implied first (left most) parameter

for non-static member functions
• Others

– You may see strange things in optimized code

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Parameter Access

• Parameters lie beneath return address
– call was last instruction executed prior to

function entry
• Pushes return address

• Parameters accessible at
[esp + 4] ;arg_0
[esp + 8] ;arg_1
…

…

arg_1

arg_0

r

…

second
parameter

first
parameter

return
addressesp

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Local Variables

• Most functions use local variables
– Locals are instantiated at time of function

call
– Allocated on the stack upon function entry

• Explicitly decrement esp to allocate
– Removed from the stack on function exit

• Various ways to do this

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Local Variable Allocation

void foo(int bar, char *str) {
int x;
double y;
char buf[32];
//function

}

• This function requires 44 bytes of space for
its locals

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Local Variable Allocation, asm
foo:

sub esp, 44 ; allocate locals
; function body
add esp, 44 ; deallocate locals
ret

• Every function is similar
– First step - allocate locals
– Last step – deallocate locals

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Stack View

SizeNameAddress

[esp+52]

[esp+48]

[esp+40]

[esp+32]

[esp]

4 bytesstr

4 bytesbar

4 bytesreturn

4 bytesx

8 bytesy

32 bytesbuf

Stack frame for
function foo

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Stack Frames in Practice

• esp based stack frames are not always
practical

• If the function needs to call other functions it
must push parameters, altering esp
– Any change to esp changes the offsets required to

access both locals and arguments
• Solution

– Use a specific register as a fixed "frame pointer"
– On the x86 this is ebp by convention

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Using ebp as a Frame Pointer

• On entry to a function we must "fix" the
frame pointer
– But there is only one ebp and the function

that called us is probably already using it
• Two steps

– Save the old value of ebp
– Setup ebp as our frame pointer

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Prologues & Epilogues

• A function prologue is the code required
to setup a frame pointer and allocate
local variables

• A function epilogue is the code required
to restore the caller’s frame pointer and
deallocate local variables

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Revised foo
foo:

push ebp ; save callers frame pointer
mov ebp, esp ; setup our frame pointer
sub esp, 44 ; allocate locals

; function body

mov esp, ebp ; deallocate locals
pop ebp ; restore caller's fp
ret

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Revised Stack View

4 bytesold ebp

SizeNameAddress

[ebp+12]

[ebp+8]

[ebp-4]

[ebp-12]

[ebp-44]

4 bytesstr

4 bytesbar

4 bytesreturn

4 bytesx

8 bytesy

32 bytesbuf

Stack frame
for foo

ebp

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Other Considerations
• Where to expect return values?

– Generally returned in EAX
– 64 bit values in EDX:EAX

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida and Stack Frames

• Ida provides two views of a function’s
stack frame
– Compressed view

• Ida shows arguments and local variables inline
with the function disassembly

– Expanded view
• By double clicking on any stack variable, you

get an expanded view of the stack for a given
function

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• In Ida, ESC back to, or otherwise
navigate to main

• Double click on ‘argc’ to obtain the
expanded stack frame view for main

• Ida determines the runtime layout of
each functions stack by analyzing the
use of esp and ebp with each function

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Stack Frame of main

saved ebp
saved eip

function
arguments

function
local variable

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

If Statements

• For a simple binary test
– Compare two values
– Jump on the inverse of the condition to the

first statement beyond the "if body"
if (a > b) {
…

}

– Compare a to b and jump if a <= b

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Simple If Statement (example)

• Conditional test and jump

cmp eax, ebx ;if
jle endif ;(eax > ebx) {

;if body
;}

endif:

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• In Ida, close the stack layout for main by
using the ESC key

• Double click on ‘simple_if’ to navigate
back to that function

• The disassembled if statement is visible

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

if body

dashed line indicates conditional branch
solid line indicates unconditional branch

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Flowcharting

• For the graphically oriented, Ida also
offers some interesting graphing
capabilities

• The first that we will look at is
flowcharting

• Available for current function only
• Graphs are not interactive

– That will change in Ida 5.0

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Flowchart of simple_if

• Position the cursor on any statement of
the simple_if function

• Select
– View/Graphs/Flowchart, or F12, or

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Flowchart Example

• Result is a flowchart that makes it clear
that there is some conditionally
executed code
– ESC will close the WinGraph32 window

• This one is easy to interpret because
the function is so small

• Complex functions far more difficult

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Compound Condition - OR

• For all but the last condition
– Test and jump if the condition is true to the

first statement of the if body
• i.e. if any part is true proceed to the body

• For the last term in the OR
– Test and jump if NOT true to the first

statement following the if body
• This implements "short circuit"

evaluation

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Compound OR
cmp eax, ebx ;if
jg body ;(eax > ebx) ||
cmp eax, ecx ;
jnz body ;(eax != ecx) ||
cmp ebx, ecx
jne endif ;(ebx == ecx) {

body:
;if body

;}
endif:

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• In Ida, ESC back to or otherwise
navigate to main

• The second function main calls is
‘compound_or’
– Rename it if you like

• Navigate to compound_or

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

if body

Either test true
jumps to body

Both tests false
bypasses body

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Compound Condition - AND

• For all terms
– Test for the opposite of the condition and

jump to the first statement beyond the if
body

• i.e. if any part is false skip the body

• This implements "short circuit"
evaluation

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Compound AND
cmp eax, ebx ;if
jle endif ;(eax > ebx) &&
cmp ebx, ecx ;
jle endif ;(ebx > ecx) &&
cmp ecx, edx
jle endif ;(ecx > edx) {

body:
;if body

;}
endif:

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• In Ida, ESC back to main or otherwise
navigate to main

• The third function called is
‘compound_and’
– Rename it if you like

• Navigate to compound_and

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Any failure
bypasses body

if body

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Commenting in Ida

• Ida allows insertion of several different
types of comments

• Comments entered by placing the
cursor on the line you wish to comment,
then selecting a comment type
– Edit/Comments menu

• Basic comment hot key is colon i.e.
Shift-;

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Commented compound_and

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

If/Else Statement

• All conditional tests that evaluate to
false jump to the first statement of the
else body

• The last statement of the if body is an
unconditional jump past the else body

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Simple If/Else Statement
(example)

• Conditional test and jump
cmp eax, ebx ;if
jle else ;(eax > ebx) {

;if body
jmp endif ;}

else: ;else {
;else body

;}
endif:

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• Navigate back to main
• The next function called is named if_else
• Navigate to if_else and create a flow chart

– The if/else structure is clear from the flow chart
– Executes code in either case
– Compare this to the graph for simple_if

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Loops
• Although x86 offers the loop instruction, it is

not always practical
– Only useful if you can test a counter against zero
– Doesn't work when you want to count up

• For tests with a fixed start value against a fixed end
value, the compiler may be able to compute the count
and use the loop instruction

for (i = 0; i < 10; i++) {

• But only if i is not used in the loop body

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Loops (cont)

• In high level languages most loops appear to
test at the top
– Conditional jump exits loop when test fails or falls

through to continue loop
• End of loop body requires unconditional jump

back to top
• Most compilers rearrange loops to contain

only a single conditional jump
– Unconditional jump factored out

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

While Loop

• Test condition
• Jump if false to first statement following

loop body
• Last statement in loop body jumps back

to test

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

While (naïve example)

top:
cmp eax, ebx ;while
jge end_loop ; (eax < ebx) {

;loop body

jmp top ;}
end_loop:

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

While (common example)

cmp eax, ebx ;pretest allows
jge end_loop ;case of 0 passes

top: ;do {
;loop body
cmp eax, ebx ;} while
jl top ; (eax < ebx);

end_loop:

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• Navigate back to main
• The function called after if _else is

named while_loop (sub_4011D1)
• Navigate to the while_loop function
• Note the use of heavier lines for

backward jumps
– This is how ida tries to point out a potential

loop

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Loop Caution

• Don’t assume that a register will contain
your loop variable for the duration of a
loop

• In a long loop body, the registers
involved in the original test may be
reused for other purposes.

• Registers need to get reloaded prior to
performing loop continuation test

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

For Loops

• Loop initialization performed
immediately prior to the top of the loop

• Counting statements placed at the end
of the loop body immediately prior to the
jump back to the top

• Test usually takes place at the bottom
of the loop

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

For (example)

xor ebx, ebx ;for (j = 0;
top:

cmp ebx, 10 ;
jge end_loop ; j < 10;
;loop body
inc ebx ; j++)
jmp top ;}

end_loop:

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Alternative For (example)
xor ebx, ebx ;for (j = 0;
jmp test

top:
;loop body
inc ebx ; j++)

test:
cmp ebx, 10 ;
jl top ; j < 10;

end_loop:

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Examples

• The next two functions called from main
contain for loops

• The functions are named for_loop and
for_loop_down respectively

• In each you can see loop initialization,
the testing, and the increment phases

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida and Strings

• Strings can be very useful in
determining the behavior of a binary
– If nothing else they reveal the use of a

char* data type
• When Ida recognizes strings in the data

section of a binary, it groups all
characters of the string together into a
static string variable

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida String Example

• The function for_loop_down
(sub_4011FE) references a string
variable

• Note what Ida has done with the string
– Automatically names the string variable

• aZZZZZ where ZZZZ are the characters in the
string

– Adds a comment that shows the content of
the string

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

heavy line for
backward jumps

default string
variable name

data cross
reference

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Switch Statements

• Can be done in many ways
• The slowest way

– A sequence of tests against each case
• break statements translate to jumps to first statement

after switch
– If no match found must result in default case or

end of switch
• The fastest way

– Vectored jump based on the switch variable
– Wastes space if cases are not entirely sequential

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• Navigate back to main
• sub_40121D corresponds to

switch_small
• Navigate to switch_small

– Small number of consecutive cases
– Successive decrement and test

• Take a look at the flowchart
– Doesn’t necessarily suggest a switch

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Larger Switches

• Consecutive case handled with jump
tables

• Non-consecutive cases handled with
subtract and test
– Subtract smallest constant test for zero
– Subtract delta to next smallest, test for zero
– Repeat

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Jump Table

• Assume eax holds switch variable which
ranges from 0..N

mov ebx, jump_table ;address of table
jmp [ebx + eax * 4]

• jump_table is the address of the first entry
(item 0) in a list of addresses for each case
– Each address occupies 4 bytes, hence eax * 4

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Jump Tables (cont)
• Jump tables can be used for any

consecutive range of values, simply
normalize to zero

• In this example, the cases run from
32..64

mov ebx, jump_table;address of table
sub eax, 32
jmp [ebx + eax * 4]

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• Navigate to function switch_large
(sub_41023F)

• In this case, Ida recognizes the jump
tables and labels things accordingly
– This is Borland code which Ida knows well

• Ida does not always do so well
– You need to recognize it on your own in

those cases

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

switch variable test

Ida recognizes case 1

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Switch Weirdness

• Apparent optimization for non-linear
cases
– Successive subtraction

• Subtract smallest case value
– If zero, then it’s a match
– If non-zero, then subtract delta to next smallest and

so on

• If any cases are consecutive, then simply use
dec rather than sub

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• Navigate to function switch_gaps
(sub_4102E2)

• In this case, Ida recognizes the
consecutive cases and uses a jump
table

• Non-consecutive tables handle using
subtraction

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Reversing Function Calls

• call statement easily recognized in
disassembly

• Usually preceded by a series of push
operations to get parameters on the
stack
– Sometimes "mov" is used rather than push

• In this case, space must have been pre-
allocated for the parameters

• Compare with asm_code_samples_gcc.exe

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Pushing Parameters -
Example

fprintf(stdout, "This program has %d …", arg_0);

.text:0804848D push [ebp+arg_0]

.text:08048490 push offset aThisProgramHas
; "This program has %d command line argume"...

.text:08048495 push ds:stdout

.text:0804849B call _fprintf

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Push via mov Example
sub_804844C(getenv("HELLOWORLD"));

.text:080484AE mov [esp+8+var_8], offset aHelloworld
; "HELLOWORLD"

.text:080484B5 call _getenv

.text:080484BA mov [esp+8+var_8], eax

.text:080484BD call sub_804844C

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Linux System Calls

• Invoked using an int 0x80
– This is a software interrupt
– Transfers control to the kernel

• Transitions to kernel stack so we can't pass our
parameters on the user stack

– We could but would need to perform a user to kernel
space copy operation

– Parameters passed in various CPU
registers

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Linux System Calls (ii)

• There are about 190 different system
calls
– But there is only one int 0x80

• Specify which system call you wish to
make by placing the syscall number into
eax before executing int 0x80

• Not well documented
– http://www.linuxassembly.org/syscall.html

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Linux System Calls (iii)

• Like a function call, each system call
expects zero or more parameters

• System calls expect their parameters in
very specific registers

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Linux System Calls (iv)

• Syscall parameters (if necessary)
– ebx – first parameter
– ecx – second parameter
– edx – third parameter
– esi – fourth parameter
– edi – fifth parameter

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Useful System Calls

char **envpchar **argvchar *file11sys_execve

ulong *argsint call102sys_socketcall

int fd6sys_close

int modeint flagschar *name5sys_open

size_t lenchar *bufint fd4sys_write

size_t lenchar *bufint fd3sys_read

int retval1sys_exit

edxecxebxNumberName

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Syscalls and Reverse
Engineering

• You will usually only see systems calls
in two types of code
– Shellcode

• Allow for smallest possible shellcode with no
need to link to compiled libraries

– Statically linked code
• All library functions linked in with user code to

form stand alone executable
• Makes code independent of installed libraries

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Pro

• When analyzing Linux binaries, Ida
recognizes the int 0x80 instruction and
attempts to comment the preceding
instructions based on current value in
eax

• Not always possible for Ida to know eax
value

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Additional Ida Features

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Reverse Engineering Goals

• Discover how a program works
– Build compatible software

• Locate hidden functionality
– Backdoors etc.

• Search for vulnerabilities in closed
source software

• All start with a quality disassembly
– We will assume Ida is used for this class

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Analysis

• Trace code to understand how it works
– Could generate your own high level code

as you go
• Observe/Understand function call tree
• Understand data types

– Everything looks the same in assembly
• Is a 4 byte quantity an int, float, or pointer?
• Depends on how it is used

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Analyzing Functions
• Two approaches

– Breadth first
• Understand a function, then try to understand

the functions that are called
– Depth first

• Descend into each function as it is called
– At some point you will get to a function that calls no

others or invokes only system/api calls
– If the former, attempt to figure out what the function

does
– If the later make note of the data passed to the

system calls and bubble the types back out toward
your initial function

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Analyzing Data

• Determining data types used in a program
helps determine its functionality

• One of the best ways to determine data types
is to look for calls to known functions
– C standard library calls
– O/S API calls

• Observe the parameters passed to these
functions and name them accordingly

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Automated Analysis

• The quality of your disassembler makes a big
difference

• IdaPro contains signatures for most of the
standard library calls made in C programs

• When Ida sees a call to a known function it
annotates your code with known variable type
and parameter name information

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Pro Strengths

• GUI provides easy navigation and multiple
windows of useful info
– Graphical display of control flow
– Double click navigation

• Understands many library calls and data
types
– Particularly strong against Windows binaries

• Allows you to annotate your disassemblies

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Various Other Windows

• Hex view
– Raw hex display, tracks along with IDA

View
• Segments

– Breakdown of program segments and
virtual addresses assigned to each

• All accessible via View/Open subviews
menu item

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Subwindows

Windows opened at startup

Open/reopen other windows from the View menu

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Revisiting Ida Stack Displays
• Ida only assigns names to locations that are

actually referenced in a function
• s and r are Ida standard names for the saved

register space and saved return address
respectively

• Accounts for every byte on stack
• Data sizes

– db = byte
– dw = word = 2 bytes
– dd = double word = 4 bytes

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Stack Based Arrays
• Open demos/proj4 binary

– Probably need to set file type filter to*.*
– Note that Ida properly identifies it as an

ELF binary
• Code for main begins:

int main(int argc, char **argv, char **envp) {
unsigned int index;
char buf[32];

– 36 bytes of stack locals

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• Double click on var_38 to bring up the
stack frame view

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Stack Frame View
• Stack based arrays consume a lot of space in

the view
– Ida often identifies start as dd
– Many unnamed db lines – why?

• Ida allows you to group consecutive memory
locations into arrays
– Find the start of the array
– Set the data size (d key toggles between db, dw, dd)
– Select (Num *) key or click the * tool button to create

an array
– Ida guesses at a proper size

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Creating an Array

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Creating an Array
• Ida collapses the array variable and all

accompanying bytes into a single statement

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Collapsing Arrays

• Two notes
– Compilers often insert padding bytes after

arrays
• Hence the 44 byte array rather than the 32

bytes we asked for
– The disassembly shows us the exact

number of bytes that would be required to
overflow the buffer and corrupt other data

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Control Flow

• In the left margin, Ida indicates control
flow for jumps with arrows/lines showing
the direction and target of jumps
– Conditional jumps – dashed
– Unconditional jumps – solid
– Backward jumps – heavier line

• Very useful in identifying branching and
looping constructs

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Sample (proj3a)
• In this case a loop is shown as flow is

backwards

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Data Display
• Ida allows selection of alternate data displays

– Hex, octal, decimal, binary, ASCII

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Changing Data Format
• Right click on data item or choose

Edit/Operand Type

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Cross Referencing

• On initial analysis, Ida creates cross
references every chance it gets

• Cross references are displayed as
comments in the right margin of the
disassembly

• Cross references indicate what other
lines of code refer to the current line
– Very useful for understanding control flow

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Graphing

• Cross references form the foundation for a
very useful feature of Ida Pro, graphing

• The following graphs can be generated
– Function flow charts
– The entire function call tree (forest) for a program
– All xrefs from a function

• Who do I call?

– All xrefs to a function
• Who calls me?

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Flow Chart

• demos/stage4, sub_804844C
• View/Graphs/Flowchart (F12)

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Function Call Graph (stage4)

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Xrefs From (stage4, sub_804849E)

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Graphing Limitations

• Graphs are not interactive
– Not navigable, collapsible or editable
– Lose address information
– Can’t prune

• Often too much information to be useful
• Graphing utility is stand alone app
• No access to generated graph source

code or graphing functionality via api

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Graphing Improvements

• Third party developers have filled a
need
– Sabre’s BinDiff, BinNavi
– Pedram Amini’s ProcessStalker

• Ida 5.0 will introduce many new features
– Integrating graphing
– Graphing api directly accessible to plugin

developers

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Comments

• There are several types of comments you can
add to a disassembly
– Access via Edit/Comments menu or hotkeys
– We have already seen standard comments

• Three additional types
– Anterior lines

• Entire preceding line dedicated to comment text
– Posterior lines

• Entire succeeding line dedicated to comment text
– Repeatable comments

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Repeatable Comments

• Repeatable comments are repeated at
any location that refers to the original
commented location

• Entered with ; hotkey
• Useful, for example, when you have

commented a data item and you wish to
see that comment where the data item
is referenced

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Commented Code
• Note that Ida uses comments itself to

display things like references and
function header info

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Data Types and Data
Structures

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Structures

• User defined/complex data type are used
frequently in programming
– C struct for example

• Tough to disassemble because field access
is a complex operation in assembly

• Ida allows you to define struct data types and
refer to the offsets in your disassembly

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• Open demos/fetch
• The call to connect requires a sockaddr_in,

so var_28 must be one

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Sidenotes

• Ida 4.9 does a better job of
automatically applying type information
to disassemblies than previous versions

• The snippet on the previous slide was
generated with 4.9

• The same binary loaded in 4.8 will show
no type info at all

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Structures Window
• Bring up from View/Open Subviews/Structures
• This is where you create and edit structures

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Creating a new struct
• Press the Insert key
• Give the structure a name

– Or add a standard struct
– For Windows binaries, Ida has a large number of

predefined standard structs
– For Linux/Unix you may need to add a type library

• Add new fields using the d key
• Name the fields using the n key

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

New Struct

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Adding Fields
• Add fields based on what you see or

what you know (if you have the source)

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Naming Fields
• Name the fields (n key)

I padded the struct to its
known size of 16 bytes

by adding an 8 byte array

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Applying Struct Templates
• In your disassembly, click on the variable

that is to become a struct
– If it is a stack variable, you should be in stack

view
• Select the Edit/Struct var…menu option
• Double click on the name of the desired

structure

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Select Struct Variable

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

• Note: Ida 4.9 users should redesignate
var_28 as a sockaddr_in

Select Struct

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Result

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Using Struct Fields

• In your disassembly, struct field names
are now available for cleaning up
structure member access

• Ida will apply names where it can
• You can right click on constant values to

change numbers to a struct field name

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example (fetch)

• Right click on offset to access struct
field renaming options

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example (fetch)

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Type Libraries
• Ida offers standard data types when it

recognizes the compiler used to create the
binary

• For Linux/Unix binaries it often fails to
recognize the compiler (does better job in 4.9)
– Thus no data types are offered

• You can force Ida to show you data types
– View/Open Subview/Type Libraries
– Which will get you a warning and an empty window

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Type Library Example

• Close the fetch demo, choosing the "DO
NOT SAVE" option in the close dialog

• Reopen demos/fetch
• Choose

– View/Open Subview/Type Libraries

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Type Libraries (cont)

• Press the insert key to add a library
– 4.9 users will see an entry here already

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Type Libraries (cont)

• Choose an appropriate library (GNU
C++ unix)

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Type Libraries (cont)

• Once a type library is selected, Ida will
apply function signatures from the
library to your disassembly

• Note the change in the disassembly
listing (versions < 4.9)

• Try to change the type of var_28 from
sockaddr to sockaddr_in

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Adding a Standard Struct

• Navigate to the Structures window
• Press the insert key and choose "Add

standard structure"

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Choosing a Standard Struct

• Scroll to and
highlight the
sockaddr_in
struct, then
click OK

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Change var_28

• Return to the IDA View window
• Double click on var_28 to get a stack

frame view
• Highlight var_28
• Use the Edit/Struct_var menu to change

var_28 to a sockaddr_in

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Customization Part 1

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Basic Configuration

• Ida contains many configuration files in
its cfg subdirectory

• Three files of interest
– ida.cfg
– idagui.cfg
– idauser.cfg

• User specified options (create this yourself)

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

ida.cfg

• Many parameters to affect basic
behavior
– Whether to create backups
– Formatting options
– Default maximum name length

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

idagui.cfg

• Hotkey assignments
– Can add or change mappings

• Presence or absence of “Patch”
submenu
– DISPLAY_PATCH_SUBMENU = NO
– Set to yes for access to patch dialog

• Allows modification of database bytes

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

User Defined Macros

• Ida has a built in scripting language
called IDC

• Allows scripting of complex actions
– Virtually anything you can do with hotkeys

or menus
– Cursor control
– Opening input dialogs

• We will cover IDC later

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Running Macros

• Macro options
– Run once via File/IDC Command
– Save macro as stand alone file and run via

File/IDC File
– Assign macro to hotkey by editing

idc/ida.idc
• This file is executed at Ida startup

• We will do all of these later

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Advanced Binary Analysis

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Stripped Binaries

• Contain no symbol table information
• Generally the only names that get

recovered are imports
• Look at the difference between

demos/proj3a and demos/proj3b for
example

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Windows

• Windows binaries import a lot of extra
stuff
– Compare the proj3c, "Debug" version to

proj3a
– Compare the proj3d, "Release" version to

proj3b

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Analyzing Statically Linked
Binaries

• Statically linked binaries can be
challenging

• No import tables
• Large amounts of code
• Most of it is library code

– Don't want to reverse known library
functions

– Must recognize them somehow

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Statically Linked Binaries
• Linked to library code at build time

– As opposed to runtime which would be
dynamic linking

• Contain no external dependencies
• Usually much larger files
• Much more stuff to sift through

– See demos/proj3e

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Statically Linked, Stripped
Binaries

• Biggest hassle to reverse
– demos/proj3f

• Difficult to tell user code from library
code
– Could look for syscalls and go from there
– Much more to libraries than just syscalls

• Ida has a tool to help

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

FLAIR

• Fast Library Acquisition for Identification
and Recognition

• Examines a library and creates
signatures for each exported function

• Then you can match signatures against
functions within a binary

• Not well documented
– See top level readme and sigmake.txt

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

FLAIR Installation

• Ida 4.8 users
– Create a Flair48 subdirectory in your main IdaPro

directory
– Unzip extras/flair48.zip into your newly created

subdirectory
• Ida 4.9 users

– Create a Flair49 subdirectory in your main IdaPro
directory

– Unzip extras/flair49.zip into your newly created
subdirectory

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

FLAIR Demo

• Copy demos/libc_6.a into your
Flair4x/bin directory

• Open a command window and cd into
the Flair4x/bin directory

• Our demo library is an ELF binary so we
will use the pelf tool

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Creating Flair Signatures

• pelf libc_6.a libc_6.pat
– Parse the library and create a pattern file

• sigmake libc_6.pat libc_6.sig
– Create signatures from a pattern file, this

will yield errors
• Delete the commented lines at the top

of the file libc_6.exc and rerun sigmake
• sigmake libc_6.pat libc_6.sig

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Applying Flair Signatures
• Close IdaPro
• Copy the file libc_6.sig from the Flair4x/bin

directory into your <idabase>/sig directory
• Restart IdaPro
• Open demos/proj3f
• Choose file/Load file/Flirt signature file

– Choose LIBC_6 "Unnamed sample library"
• Many though not all functions are now

recognized

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Extending Ida's Capabilities

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Scripting

• Scripting in Ida is done using the IDC
scripting language
– C like
– No data types
– Declare all variables at beginning of

functions
• No globals

– Arrays are cumbersome at best, no C style
array syntax

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDC Documentation

• Some help actually included with IDA!
• Look for topics

– "IDC Language"
• Expressions
• Statements
• Variables
• Functions

– "Index of IDC Functions"

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDC Variables
• Local variables only
• Declare first in function

– No initialization with declaration
• Not typed

– auto is the keyword that introduces a variable
declaration

– Example
auto count, index, i;

• Functions generally expect int, float or string
data

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDC Functions

• All are defined with the "static" keyword
• Argument list does not require any type

info or the auto keyword
• Return type never specified

– Just return whatever you want

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example IDC Function

• Example function

static demoFunc(arg1, arg2) {
auto var1;
var1 = arg1 * arg2;
return var1;

}

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDC Expressions

• Use C style operators except op=
• ints promote to floats as required
• + with strings performs string

concatenation
• Comparisons work for string operands

if ("cat" == "dog") {

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDC Statements

• Most C statements available
– No switch statement
– No goto
– Loops

• for, while, do all available
• break and continue available

– Bracing { } used as in C

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Accessing the Ida database

• Data read functions
– long Byte(long addr);
– long Word(long addr);
– long Dword(long addr);

• Read 1, 2, 4 bytes from indicated database
location
– Address should be a virtual address

• Return -1 if address is invalid
– Outside any defined program section

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Modifying an Ida Database

• Data writing functions
– void PatchByte(long addr, long val);
– void PatchWord(long addr, long val);
– void PatchDword(long addr, long val);
– Change 1,2, or 4 bytes at the indicated

virtual address
• Useful when working with self modifying

code

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Interactive Scripting

• Interface functions
– void Message(string format, …);

• Print a message to the message area
• format is printf style format string

– void Warning(string format, …);
• Show a warning dialog box

– void Fatal(string format, …);
• Show a fatal dialog box and quit IDA

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Interactive Scripting

• User query functions
– long AskYN(long default, string prompt);

• Ask a yes or no question in a dialog box
• Returns

– Cancel == -1
– No == 0
– Yes == 1

– string AskStr(string default, string prompt);
• Ask the user for a string

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Interactive Scripting

• File selection dialog
– string AskFile(bool forsave, string mask,

string prompt);
• forsave – 0 -> open, 1 -> save
• mask such as "*.*"

• Several other "Ask" function for
requesting various data types

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Cursor Control

• Read current cursor location
– long ScreenEA();

• Returns the virtual address of the cursor
location

• Jump display to new location
– long Jump(long addr);

• Set cursor to indicated virtual address

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Persistant Data
• IDC Arrays

– The only way to have anything resembling global data
– long CreateArray(string name);

• Create a named array, return its "id"

– void DeleteArray(long id);
• Clear all elements from and array

– long SetArrayLong(long id, long idx, long val);
– long SetArrayString(long id, long idx, string str);
– string or long GetArrayElement(long tag,

long id, long idx);
• Tag is either AR_LONG or AR_STR

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Script Execution

• File/IDC Command
– Type or paste IDC commands into an edit

dialog
– Can execute single statements without

need to wrap within a function
• File/IDC File

– Used to execute a stored IDC "program"
• Program needs a "main" function

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Script Execution

• Macro hotkey execution
– Create function and save in idc/ida.idc
– Need not be named main (in fact can’t be

named main)
– Use AddHotKey function to map macro to

a hot key sequence
• AddHotkey("Shift-Z", "MyMacro");
• Add this statement in ida.idc main function

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example IDC Commands

• Open demos/proj3a
• Double click on the string "SECRET="
• Select File/IDC Command…
• Enter the following

auto i, val;
i = ScreenEA();
while ((val = Byte(i)) != '=') {

PatchByte(i, val + 32);
i++;

}

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Stored IDC Programs

• Must have a "main" function
• Stored programs must

#include <idc.idc>

• #define is understood as well
• /* … */ or // comments understood

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Uses for Scripts

• De-obfuscating obfuscated code
• Finding and labeling uses of insecure

functions
• Analyzing stack frames for presence of

stack allocated buffers
• Automatically recognize and create data

structures
• Infinite possibilities

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example IDC Program

• On your CD
– extras/scripts/n2b_d32.idc

• This script mimics the UPX
decompression algorithm to
decompress a UPX packed binary

• Also rebuilds import table

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example IDC Program
• Using Ida, open demos/proj3_upx.exe
• This is a UPX packed executable

– It IS NOT hostile, but your AV software might think it is

• Position the cursor at start
• Select File/IDC File…
• Open extras/scripts/n2b_d32.idc
• Click through any warnings
• Notice the appearance of many more Names in the

Names window
• Right click in the Strings window and choose setup,

then Ok

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDC Programs

• Once you run an IDC program a small
"recent IDC scripts" window will appear

• Click on the sheet of paper to edit a
script in notepad or the gear to run the
script
– Open n2b_d32.idc in notepad to view the

script

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Advanced Scripting

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDC Iterator Functions

• IDC offers iterator functions
– Iterate through code xrefs

• Rfirst, Rnext, RfirstB, RnextB
– Iterate through data xrefs

• Dfirst, Dnext, DfirstB, DnextB
– Iterate through segments

• FirstSeg, NextSeg
– Iterate through functions

• NextFunction

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDAPython

• Author: Gergely Erdélyi
• Allows scripts to be authored in Python
• Scripts have access to full IDA API as

well as full Python API
• http://d-dome.net/idapython/

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDA Plugins

• Integrate directly into IDA
– Essentially a dll that IDA automatically loads
– Loaded from <ida dir>/plugins when IDA starts

• Compiled C/C++
– Can access IDA api
– Can access Windows API
– Samples provided as Visual C++ projects or gcc

makefile

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDA Plugins

• IDA SDK is required to build plugins
• Essentially no documentation

– SDK is not supported by DataRescue
• Best, though not great, source of info

are the hpp header files in
<sdkdir>/include
– All plugin files should #include <ida.hpp>

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Plugin Writers Guide

• Author: Steve Micallef
• Included on CD

– docs/ida_plugin_writing.pdf
• Online version at

– http://www.binarypool.com/idapluginwriting/
• Hyperlinked version at

– http://www.openrce.org/reference_library/ida_sdk

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Plugin Architecture

• All plugins need an init function
– Called by IDA at startup
– Instructs IDA whether to load the plugin or not

• Plugin exports: plugin_t PLUGIN
– Struct that describes various plugin options

including
• Name of the init function
• Name of the term(inate) function
• Name of the run function
• Desired hotkey to activate the plugin

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Plugin Architecture

• Termination function is called when IDA
is closing to offer plugin a chance to
cleanup after itself

• Run is called by IDA whenever user
enters hotkey sequence
– Can do just about anything you want here

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Basic Plugin

• Distributed with SDK
• In <sdkdir>/plugins/vcsample
• Demonstrates some basic plugin

concepts

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

IDA API

• C functions offered that do almost all of the
things you can do in the IDC language
– Unfortunately function names are not always the

same
– Can interact with status window or open basic

dialog boxes
• Significantly more functions available for

lower level interaction with IDA database

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Plugin Demo
• x86 emulator plugin
• untar extras/ida-x86emu-0.9.tgz into

<sdkdir>/plugins
• Shutdown IDA, DO NOT SAVE your

proj3_upx.exe work

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Build w/ Visual C++ 6.0

• Using MSCV++, open
<sdkdir>/plugins/ida-x86emu/x86Emulator.dsw

• Choose Build/build x86emu.plw
• Copy

<sdkdir>/plugins/ida-x86emu/Debug/x86emu.plw
To
<idadir>/plugins

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Build w/ cygwin

• Open cygwin terminal
• cd to <sdkdir>/plugins/ida-x86emu/
• make –f makefile.gcc
• cd to <sdkdir>/plugins/bin
• Copy

<sdkdir>/plugins/bin/x86emu.plw
To
<idadir>/plugins

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Plugin Demo

• Restart IDA
• IDA should load the plugin automatically
• Reopen proj3_upx.exe
• Position the cursor at start
• Type Alt-F8

– Which happens to be the hot key sequence for the
x86emu plugin

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

X86 Emulator Plugin

• Provides a virtual CPU
• Allows emulated execution of instructions
• Uses the IDA database as its RAM

– Provides its own heap and stack
• Fetches instructions from the IDA database

and executes them
– If an instruction modifies other instructions, then

the plugin updates the IDA database accordingly

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

X86 Emulator Plugin

• Every time an instruction is fetched, the
plugin tells IDA to turn that location into code
– Even if IDA previously thought it was data
– May require undefining existing instructions

• Useful for working through self modifying
code

• Custom dialog boxes can be used in plugins
because full Windows API is available

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Collaborative Reversing

• Ida-sync plugin allows multiple users to share
work on a single binary

• Client/server architecture
• Server - Python based server

– Stores user, database, and database change
records on central server

• Client – Ida plugin
– forwards some user actions to server for

distribution to other clients

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Vulnerability Scanning

• Halvar Flake's BugScam
– Set of IDC scripts
– Iterates through calls to unsafe functions
– Analyzes arguments to each call for

possible unsafe use
– Generates html reports pointing to possible

problems
– http://sourceforge.net/projects/bugscam

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Vulnerability Discovery with
Ida Pro

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Vulnerability Discovery

• Ida does not automate the vulnerability
discovery process

• Its capabilities may make the process
easier

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Stack Analysis

• Accurate stack display
– Required for determining proper placement in

return address in exploit buffer
– Clear picture of what variables may get clobbered

during an overflow
• Is there buffer in this stack frame?
• What is the exact distance from the buffer

start to overwrite the saved eip?
• What variables lie between the buffer and

eip?

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Function Xrefs

• Cross reference lists
– Clean display of all calls to specified

functions
• Xrefs To

– What are possible execution paths to arrive
at a specific location

• Xrefs From
– Where might this data get passed

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Virtual Address Layout

• Ida acts like a loader when it analyzes a
binary for the first time

• Maps the binary to virtual addresses
just as actual loaders do

• Easy to determine useful address when
write anywhere vulnerabilities are
discovered

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

GOT Layout

• .got is just another section to ida and
easy to view

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Binary Patching

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Why Patch

• Add/Delete/Modify existing behavior
– Fix vulnerabilities in closed source binary
– Bypass existing behavior

• Common among crackers
– Customize strings

• Hex editor may be just as easy in this case

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Patching Features

• Patch submenu
– Enabled by editing cfg/idagui.cfg

• DISPLAY_PATCH_SUBMENU = YES

• Produce file options
– File/Produce File submenu

• Looks promising
– Especially “Create EXE file …”

» Not supported for most formats
• “Create DIF file …” is best option

– Non-standard diff format

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Patch Submenu

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Using the Patch Submenu

• Change byte and change word are just
shortcuts to idc PatchByte and
PatchWord functionality
– Opens dialog to changes values starting at

cursor address
• Assemble

– Opens dialog to enter new instruction at
cursor location

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Assemble Dialog

• Replaces cursor instruction with user
specified instruction
– Users responsibility to make sure

instruction alignment is maintained

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Instruction Alignment

• nop below only takes one byte
– Bytes a 08048496-A remain unchanged

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Ida Dif Files

• Most practical way to export changes
• Only output changes made via

PatchByte/Word/Dword
• Simple text file

– Must apply changes to transform original
binary

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example Ida Dif File
This difference file is created by The
Interactive Disassembler

proj3a
000005C0: 53 73
000005C1: 45 65
000005C2: 43 63
000005C3: 52 72
000005C4: 45 65
000005C5: 54 74

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Patching Challenges

• Changing a few bytes is relatively simple
• Careful when changing any relative offset

– Make sure you compute correct new offset
• Adding code is more challenging

– Tough to change function calls
• Must already link to desired function
• Need space for code to push additional parameters

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Adding Code to a Binary

• Can’t simply insert new code
– Impact on binary file header values

• Moving code changes relative/absolute
offsets
– Must propagate changes through entire

binary
• Best option is to patch into available

holes

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Binary “Caves”

• Requires detailed understanding of binary
format

• Binary sections often have alignment
requirements

• Subsequent section must begin with specific
alignment

• May offer “slack space” opportunities at end
of each section
– Size on disk vs. size in memory

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Example

• Sections align to 256 byte boundaries

.data
.bss

.text
headers

file
memory

.data

.bss

.text0x9F20 bytes 0xE0 slack 0x08048300

0x08052300

Can fit 224 bytes in here, but must
adjust .data and .bss pointers

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Analyzing Obfuscated Code

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Background
• What is obfuscated code?

– Program transformation to reduce
"readability"

• Performed at source or binary level
• This talk deals with binary obfuscation

– Preserves original behavior of program
• Why obfuscate code?

– Protect intellectual property
– Hide malicious intent

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Background

• Why analyze obfuscated code?
– To understand functionality in order to

interoperate
– To access malicious program within for

further analysis
– To understand state of the art in code

obfuscation

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Obfuscation Basics
• Program written and tested using standard

methods
• Compiled program is fed to an obfuscator
• Obfuscator typically "encrypts" the original

program
• Obfuscator combines encrypted data block

with a "decryption" stub to create a new
executable

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Obfuscation Basics

• Program entry point changed to point to
decryption stub

• Decryption stub executes and decrypts
original binary

• Once decrypted, stub transfers control
to original entry point and original binary
executes

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Simple Obfuscation

Data
Code

Header

Obfuscated
Data

De-obfuscation
stub

Obfuscated
Code

Header
Entry point

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Types of Analysis

• Black Box/Dynamic
– Observe the behavior of the program in an

instrumented environment
– Difficult to test all code paths

• White Box/Static
– Deduce behavior by analyzing the code
– Requires high quality disassembly

• Hybrid/Gray Box

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Anti-Reverse Engineering
• Anti-disassembly

– Efforts to prevent proper disassembly
• Encrypted code
• Jumps to middle of instructions

– Violates assumption of sequential execution

• Anti-debugging
– Debugger detection
– Timing checks
– Self-debugging
– Virtual machiine environment checks

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Anti-Reverse Engineering

• Anti-Analysis
– Intentional exceptions to modify execution path
– On demand decryption of code blocks

• Entire executable is never decrypted at once
• Defeats memory snap-shotting

– Instruction replacement/emulation
• Instructions replaced with software interrupt
• Interrupt handler does table lookup and emulates the

instruction

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Analysis Techniques

• Generally running malicious code is a
bad thing

• Static analysis requires a high quality
disassembly

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Obfuscated Code Analysis

• Hand tracing assembly language is
tedious and error prone

• Anti-reverse engineering techniques
obfuscate code paths

• Obfuscated binaries require de-
obfuscation before their code can be
analyzed

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Obfuscated Code Analysis

• The challenge in static analysis is to get
at the obfuscated code

• Essentially need to perform the function
of the de-obfuscation stub

• Requires running the code
– By hand
– Debugger
– Emulation

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Static De-obfuscation

• First step – understand de-obfuscation
algorithm

• Second step – mimic the algorithm
– Can be scripted in IDA

• Requires unique script for each de-obfuscation
technique

– Alternatively mimic the CPU
• Add an execution engine to IDA

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

One Method

• x86 emulator plugin for IDA
• Lightweight emulator

– Maintains CPU state
– 'Fetches' instructions by querying IDA

database
– Emulates the instruction
– Updates IDA database if required

• Self modifying code for example

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Emulator Console

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Results

• No need to develop scripts or even
perform detailed analysis of de-
obfuscation layer
– The emulator is the script

• Allows safe, automated
unpacking/decrypting of "protected"
binaries
– UPX, burneye, shiva, tElock, ASPack, …

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Emulator Features

• Similar to a debugger in many ways
• IDA database serves as instruction and

static data memory space
• Emulator supplies its own stack space
• Emulator supplies its own heap

– Redirect library functions to plugin provided
equivalents

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Emulator Memory

• Code and static data must be fetched
from IDA database

• Other references must be directed to
either stack or heap
– Every memory reference checked
– Could easily add comprehensive memory

usage analysis

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Limitations

• Slow
– Because of emulated execution and IDA

interactions
• Instruction set emulator only

– Not an O/S emulator
– Can't follow calls into dynamically linked functions
– Can't follow system calls in statically linked

functions

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

O/S Interface Issues

• Generally need to provide some basic
services to the de-obfuscation routine
– Memory allocation
– Exception handling
– Linking services

• Minimal set of functions provided by the
plugin
– Heap management
– Windows Exception Frames

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Morphine Demo

• Morphine is an obfuscator used on
some windows rootkits

• Available in demos/rootkit/avg.exe
– Load into IDA
– Use emulator to unpack and extract

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Contact Info

• Chris Eagle
– cseagle@redshift.com

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

Resources
• IDA Downloads

http://www.datarescue.com/idabase/idadown.htm
– Halvar Flake's structure reconstructor

http://www.datarescue.com/freefiles/strucrec.zip

• Interesting IDC scripts
– Halvar Flake's script based "security scanner"

http://sourceforge.net/projects/bugscam
• Scans for use of strcpy, printf, etc

• x86 Emulator plugin
– http://sourceforge.net/projects/ida-x86emu

Copyright © 2005 Chris Eagle

Copyright © 2006 Chris Eagle

References

• Pentium reference manuals
– http://developer.intel.com/design/Pentium4/

documentation.htm#manuals
• Others on CD in docs directory

– File format references
• API references are always handy

– MSDN
• http://msdn.microsoft.com/library/default.asp

